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Abstract

In this article, two important stochastic processes, namely fractional Brownian motions (fBm) and fractional Gaussian noises
(fGn) are analyzed, within a Fisher-Shannon framework. These processes are well suited for the realistic modeling of phenomena
occurring across various domains in science and engineering. An unique feature that characterizes both fBm and fGn, is the
Hurst parameter H, that measures the long/short range dependence of such stochastic processes. In this paper, we show that these
processes, from which we extract the degree distribution of the associated natural visibility graph (NVG), can be located in an
informational plane, defined by normalized Shannon entropy S and Fisher information measure F, in order to estimate their Hurst
exponents. The aim of this work is to map signals onto this informational plane, in which a reference backbone is built using
generated fBm and fGn processes with known Hurst exponents. To show the effectiveness of the developed graphical estimator,
some real-world data are analyzed, and it found that the H estimated by our method are quite comparable to those obtained from
four well-known estimators of the literature. Besides, estimation of H parameter is very fast and requires a reduced number of
samples of the input signal. Using the constructed reference backbone in the Fisher-Shannon plane, the associated H exponent can
be easily estimated by a simple orthogonal projection of the point (S , F) extracted from the truncated degree distribution of the
considered signal NVG representation.
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1. Introduction

Time series measurements provide valuable information for
investigating and describing natural phenomena and dynamic
processes of complex systems. Information-based measures of
randomness or regularity of time series have received consider-
able attention in many fields such as physics, biology or finance
[1]. In the system identification domain, parameter estimation
is crucial and is carried out in the presence of perturbations.
The noisy observations constitute the time series involved in
the parameter identification process [2, 3]. Various strategies
have been developed to understand and analyze the complex be-
havior of non-linear time series [4], including information the-
ory, machine learning and time-frequency methods. Recently,
a bridge has been built between signals and complex networks
[5, 6, 7]. This has led to new perspectives on the analysis of
these signals using graph theory, which proposes its own set of
tools and methods. More precisely, time series or signals anal-
ysis has greatly benefited from graph representations as they
provide a mapping able to deal with issues of non-linearity and
multi-scale. To this end, some methods have been developed
to construct a graph from an univariate time series, where this
graph inherits several structural properties of the time series [8].
The graph can produce insights that are not visible by classical
time series approach. Consequently, the dynamic characteris-
tics of the time series are studied by analyzing the topological
structure of the graph. One pertinent attribute that can be ex-

tracted from these graphs is the degree distribution, which, al-
though extremely simple, can be used for example to identify
radar emitters [9] or to classify EEG signals [10, 11]. Among
the most popular algorithms for mapping a graph from an or-
dered set of time series samples is the visibility graph (VG) in-
troduced by Lacasa et al. [7]. This graph is computationally ef-
ficient, provides a deterministic non-parametric representation
of the time series, and is able to deal with non-stationarity and
non-linearity issues of the time series [7, 12].

Several information theory quantifiers, such as Shannon en-
tropy, Fisher information measure (FIM) or Fisher-Shannon plane,
have also been introduced for analyzing time series and under-
standing the behavior of associated systems [4], where FIM de-
scribes the local changes of the underlying distribution whereas
Shannon entropy is a global quantifier of this distribution in-
formational content. Bercher and Vignat highlight the joint use
of these two quantifiers and defined the Fisher-Shannon infor-
mational plane for characterizing the non-stationary behavior
of complex time series [4]. Then, this graphical tool makes it
possible to locate, on a two-dimensional plane, a time series or
dynamic system based upon its Shannon entropy and its FIM.

Few information-based tools are dedicated to the study of
graphs and time series seen as graphs. Recent works of the
literature have shown the interest of this Fisher-Shannon in-
formational plane, combined with horizontal visibility graph
(HVG) to analyze stochastic time series [13, 14, 15, 16, 17, 18].
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However, those studies have been limited to fractional Brown-
ian motion (fBm) processes [18] and the crucial problem of the
estimation of the Hurst parameter has not been tackled. In the
present work we follow the same strategy and, in addition to
fBm processes, extend the study to fractional Gaussian noise
(fGn), and propose a graphical estimator of the Hurst exponent
H. More precisely, we extend the work of Gonçalves et al. [18]
by using this informational plane in which we locate the degree
distributions of natural visibility graph (NVG) constructed from
fBm and fGn processes to estimate their Hurst parameters. To
the best of our knowledge, this is the first time that NVG algo-
rithm associated with this informational plane is used to esti-
mate quantitatively the H parameter. We show the effectiveness
of the proposed tool by estimating such a parameter of some
real-world time series. These estimates of H are compared to
those of four well known estimators of the domain using a qual-
itative analysis in that, to the best of our knowledge, there is no
“golden standard” method for estimating this parameter.

2. Fractional Brownian motion& fractional Gaussian noise

The fBm is a non-stationary and self-similar process that
exhibits short/long-term dependence, self-similarity and power-
law spectra. With fractional character depending on the pa-
rameter H ∈ (0, 1), the fBm is continuous, has stationary in-
crements and is defined [19] as a zero-mean Gaussian process
BH(t), t ∈ [0,T ], with a covariance equals to

E[BH(t)BH(s)] = 0.5
(
|t|2H + |s|2H − |t − s|2H

)
. (1)

For H ∈ [0, 1/2] the process exhibits short dependence and its
increments are negatively correlated. When H = 1/2, we find
the standard Brownian motion. Finally, when H ∈ [1/2, 1], the
process exhibits long-range dependence and its increments are
positively correlated [20]. Due to its non-stationary character,
the fBm is not suited for modeling stationary processes. That is
why increments of fBm, called fractional Gaussian noise (fGn)
defined as GH(t) = BH(t) − BH(t − 1), are used and verify the
stationary property. Both fGn and fBm, are employed to model
a large class of natural phenomena, and most of their statistical
properties depend on the parameter H. To construct a fGn of
parameter H, we can then construct a fBm of parameter H and
differentiate it and to study a fGn of parameter H, it may be
easier to integrate it to see it as a fBm of parameter H (after
removing the mean so that the cumulative sum in the discrete
case is fBm-like). Indeed, many signal processing methods or
Hurst estimators are essentially based on fBm [21].

3. Visibility graph representation in a Fisher-Shannon in-
formational plane

3.1. Visibility graph (VG)

Several methods for encoding time series in graphs have
been proposed such as the VG which is a widely used approach
[7, 22]. The resulting network offers new insights, often reveal-
ing non-trivial properties about the data they represent, while

preserving the information of the original time series. Topolog-
ical analysis of this network provides new information about
the original data, while preserving its original properties. The
measurements are based on calculations of networks character-
istics such as centrality, degree or connectivity. Lacasa et al. [7]
have shown that the NVG associated with a fractal time series is
a scale-free graph and that it is possible to extract information
about the long-term dependence and fractality of the time series
from this graph. The NVG transforms a signal x = (xi)1≤i≤n of
n samples into a graph with n vertices constructed thanks to a
simple geometric criterion: an edge exists between vertices i
and j if and only if any other sample xk placed between xi and
x j satisfies

xk < x j + (xi − x j)
j − k
j − i
, ∀k ∈ ⟦i, j⟧. (2)

What makes NVG so interesting is its ability to analyze a wide
class of time series, in particular those from very complex phys-
ical or biological systems, with a low algorithmic construction
complexity of O(n log n).

3.2. Degree distribution
One motivation of this work is the ability to estimate the

H parameter of fBm and fGn processes from the slope of the
degree distribution of the associated horizontal visibility graph
(HVG) [23, 24], a variant of the natural one [25]. Indeed, de-
gree distribution is a simple attribute to capture information
about a graph, and still gives clues about the structure of the
graph. It has been shown the interest to classify non-stationary
signals such as EEG signals using degree distribution [10, 11].
Recalling that the degree deg(k) of a vertex k is the number of
edges incident on it, the degree distribution of the graph is de-
fined by

p = (pi)1≤i≤n, pi =
Card

(
{k : deg(k) = i}

)
n

(3)

where pi denotes the ratio of vertices having i neighbors. We
assume here that the simple degree distribution gives enough
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Figure 1: Using the NVG algorithm (top right) on a time series (top left) to get
its NVG (bottom left) and extract its degree distribution (bottom right).
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information about the VG, even if others can be used: weight
distribution [18] if the VG is weighted, the distance distribu-
tion [26] or the centrality distribution [27]. Figure 1 illustrates
the different steps to map an input signal into NVG and the ex-
traction of its degree distribution. Figure 2 shows fBm draws
of 50,000 points for different H values, and the degree distri-
butions (zoomed for degrees between 1 and 50) of the NVG
constructed from these signals. It is clear that these distribu-
tions are quite different from one another: for a small H value,
the distributions are very tight around degree 2-3 because, due
to the temporal structure of the process, there are few samples
that see a significant number of neighbors. For large values of
H, on the other hand, it is noticeable that some samples see nu-
merous neighbors, making the tail of the distribution thicker.
All these observations then give hope that distributions consti-
tute a suitable tool to discriminate between H parameters. It
is then necessary to characterize these distributions. A way to
do it is to combine two informational quantifiers: a local and a
global one detailed in the following subsection.

3.3. Fisher information and Shannon entropy
In this work we exploit the potential of Fisher-Shannon in-

formational plane, originally introduced to analyze time series
after extracting and estimating their amplitude distribution [4].
The idea is to combine a global informational quantifier like the
normalized Shannon entropy (NSE) [28] and the Fisher infor-
mation measure (FIM) employed to characterize local changes
in the distribution [29]. In their work, Vignat and Bercher moti-
vate the use of this plane because FIM makes it possible to char-
acterize the non-stationary behavior of signals, whereas NSE
has limitations for this task. Among the properties about this
informational plane, the authors proved in the continuous case
the existence of a boundary reached when the studied random
variable is Gaussian [4]. Let us recall that the Shannon entropy
of a random variable X whose probability density function is
fX(x) is given by [28]

S (X) = −
∫

fX(x) log2 fX(x) dx. (4)
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Figure 2: Draws containing 50,000 points of fBm for a H ∈ {0.25, 0.5, 0.75}
and the degree distribution of their associated natural visibility graphs (zoomed
for degrees between 1 and 50).

In our case, i.e. when the distribution p = (pi)1≤i≤n is discrete,
we consider the NSE defined by

S (p) = −
1

log2(n)

n∑
i=1

pi log2 pi. (5)

As for the FIM, whose continuous version was introduced as
follows [29]

F(X) =
∫ (

∂

∂x
fX(x)

)2 dx
fX(x)

(6)

we consider the discretization given by [30]

F(p) =
1
2

n−1∑
i=1

(√
pi+1 −

√
pi
)2
. (7)

3.4. Construction of an informational backbone

To illustrate the representation of simulated fBm in the Fisher-
Shannon plane, we generated them for H varying from 0.1 to
0.9 in steps of 0.1, each having 50,000 points. As it can be
seen on Figure 2, the salient information is contained in the
first degree values then it is not necessary to build the degree
distribution p = (pi)1≤i≤n defined by Eq. (3) for n equals to the
number of points (50,000 in this case). That is why we only cal-
culate the degree distribution up to an empirically determined
degree threshold ε set to 100. More importantly, this makes the
method less dependent upon the number of points in the time
series being studied. Figure 3 illustrates the constructed infor-
mational backbone, which shows an almost linear relationship
that makes the estimation of H easier. This figure depicts in
gray the embedding of 10 draws of these simulated processes
in the Fisher-Shannon plane and the black points correspond to
the centroids of the draws for each H value. These black points
form the reference backbone onto which we will project the real
time series to estimate their Hurst parameters. A pseudo-code
algorithm for the backbone construction is proposed in Algo-
rithm 1 to ensure reproducibility.

Algorithm 1 Construction of a backbone B for fBm in Fisher-
Shannon information plane
Input: Number of samples n, number of draws N, vector of L Hurst
exponents h = (hi)1≤i≤L and the degree threshold ε.
Output: Backbone B.

1: for i = 1 : L do
2: s← 0
3: f ← 0
4: for t = 1 : N do
5: x← FBM(n, hi)
6: G ← NVG(x) ▷ Equation (2)
7: p← degree_distribution(G, 1:1 :ε) ▷ Equation (3)
8: st ← S (p) ▷ Equation (5)
9: ft ← F(p) ▷ Equation (7)

10: Bi,1 ← mean(s)
11: Bi,2 ← mean(f)

3
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Figure 3: Reference backbone consisting of centroids (black points) of 10 draws
embeddings of 50,000 points (gray points) of fBm with H ranging from 0.1 to
0.9. Real time series embeddings are represented by colored markers whose
orthogonal projections on the reference backbone are also depicted. A zoom
view is provided to show these orthogonal projections.

For a complete overview, the choice of the NVG rather than
HVG is justified by the fact that it is not necessary to have
many samples in the generated signals to obtain an accurate
backbone (50,000 are sufficient in this case), unlike the HVG,
which requires more than 1,000,000 samples [18]. This prob-
lem had already been mentioned by Gonçalves et al. in their
work [18], which was solved here by truncating degree distri-
butions of NVG.

4. Hurst exponent estimation of real time series

Once the reference backbone is constructed with the above-
mentioned centroids in the Fisher-Shannon informational plane
(black points linked in the Figure 3), we can first save it for
later use and it is possible to apply the same method to any
real-world signal (assuming it behaves as fBm or fGn). For a
given real time series, we construct its NVG from which we ex-

tract the degree distribution up to a degree equal to ε = 100. We
calculate the Fisher information measure F and the normalized
Shannon entropy S , and then we orthogonally project the point
(S , F) onto the lines joining the centroids in order to estimate
the Hurst exponent. This methodology is summarized in Fig-
ure 4 and a pseudo-code for this estimation method, which we
will denote VG/FS, is proposed in Algorithm 2. It is impor-
tant to keep in mind that if the backbone has already been built,
the main complexity of this estimation method comes from the
construction of the NVG, which can reach O(n log n). So it is
not an unfeasible method from a computational point of view.

To show the effectiveness of the proposed graphical estima-
tor, six real-world data are quantitatively analyzed. This set of
real data is detailed, with associated H parameters estimated
by conventional estimators, in reference [21]. Among these
time series, daily observations from NYMEX spot-month fu-

Algorithm 2 Method VG/FS to estimate the Hurst exponent H
of a time series x
Input: Backbone B = {(S c

i , F
c
i )}1≤i≤L containing L centroids in

Fisher-Shannon plane corresponding to Hurst exponents (hi)1≤i≤L and
degree threshold ε.
Output: Estimated Hurst exponent H.

1: if x is fGn-like then
2: x← cumsum(x)
3: G ← NVG(x) ▷ Equation (2)
4: p← degree_distribution(G, 1:1 :ε) ▷ Equation (3)
5: S ← S (p) ▷ Equation (5)
6: F ← F(p) ▷ Equation (7)
7: Find the two centroids (S c

j, F
c
j ) and (S c

k, F
c
k) (whose Hurst expo-

nents are respectively h j and hk) closest to (S , F).

8: X ←
(S c

k − S c
j)(S − S c

j) + (Fc
k − Fc

j )(F − Fc
j )

(S c
k − S c

j)2 + (Fc
k − Fc

j )2

9: S proj ← S c
j + X(S c

k − S c
j)

10: Fproj ← Fc
j + X(Fc

k − Fc
j )

11: d ←
√

(S c
j − S proj)2 + (Fc

j − Fproj)2

12: dtot ←

√
(S c

j − S c
k)2 + (Fc

j − Fc
k)2

13: H ← h j + (hk − h j)
d

dtot
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where F is the Fisher infor-
mation and S the normalized
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Figure 4: Flowchart of our proposed strategy to estimate the Hurst exponent H.
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ture prices for three energy commodities are used: crude oil,
heating oil and natural gas. Daily observations of two US stock
market indexes are considered: Dow Jones Industrial Average
and New-York Stock Exchange. All these financial time series
are fBm-like and their Hurst parameters are around H ≈ 0.5
[31, 21] but in order to show that our strategy works even on
signals modeled by a fGn process, hourly prices for Alberta
electricity market are considered [32]. This time series is in-
deed behaving as fGn with Hurst parameter around H ≈ 0.9
[21]. To estimate the Hurst parameter of this time series with
our method, we center and integrate it in order to have a fBm-
like signal. All these time series are embedded into the Fisher-
Shannon plane using the approach shown in Figure 4. These
embeddings and their orthogonal projections are represented by
the colored points in Figure 3. The first thing to be noticed is
that time series with a Hurst parameter close to 0.5 are located
in the neighborhood of the corresponding reference point, as is
the signal with a Hurst parameter close to 0.9.

Results of our estimator and those of four methods of the lit-
erature are reported in Table 1. The first estimator is the power
spectral density (PSD) method [21, 33]. By recalling that fBm
and fGn are often modeled using colored noises, i.e. signals
with PSD following a power law with parameter β, a fGn of
Hurst parameter H can be modeled with β ∈ [−1, 1] (β = 2H−1)
whereas a fBm can be modeled with β ∈ [1, 3] (β = 2H + 1).
The second estimator is wavelet approach (WAV) based on the
fact that the variance of the wavelet Wa,b follows a power-law
aβ (the same above-mentioned relations between H and β can
then be used) [34]. The third estimator is rescaled range anal-
ysis (R/S) [35]. The time series of length N is divided into
shorter time series of length n. The rescaled range R(n)/S (n)
is then calculated for each n value, and it can be proved that
E [R(n)/S (n)] ∝ nH when n → ∞. The fourth estimator is the
detrented fluctuation analysis (DFA)[36]. This method divides
the cumulative sum of the centered time series into consecutive
segments of length n on which linear fits are performed. Then,
the root-mean-square σ(n) of the root-mean-square deviations
of the local fluctuations (difference between the segments and
the associated linear fit) is computed and σ(n) follows a power-
law nα where α is an equivalent of the H parameter. Results
presented in the Table 1 show that the estimated values H ob-
tained by our estimator VG/FS are very consistent with those
given by PSD, WAV, R/S and DFA.

As already mentioned, there is no “golden standard” method
against which to compare our estimates. To provide a qual-
itative analysis, the boxplot-like in Figure 5 is proposed and
shows, among all conventional estimators, the minimal, the max-
imal and the average one. Our VG/FS estimates are depicted
with the same marker as those of Figure 3. For the Heating Oil
time series, our method overestimates the H parameter com-
pared with classical ones while for the Dow-Jones financial
time series, it is underestimated. For all other signals, our es-
timates are close to the average one, being almost identical in
the case of the NYSE and Natural Gas time series. These find-
ings highlight the fact that the NVG and the informational plane
are able to capture the persistence of the time series via the H
estimates.

VG/FS PSD WAV R/S DFA
Crude Oil (fBm) 0.471 0.423 0.452 0.498 0.466
Heating Oil (fBm) 0.496 0.441 0.443 0.423 0.458
Natural Gas (fBm) 0.510 0.433 0.465 0.654 0.481
Dow-Jones (fBm) 0.469 0.491 0.480 0.554 0.481
NYSE (fBm) 0.506 0.491 0.487 0.545 0.505
ALBh (fGn) 0.895 0.923 0.829 0.838 0.855

Table 1: Hurst parameter estimates by our VG/FS strategy and conventional
estimators: PSD /WAV / R/S / DFA.
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Heating Oil (fBm)
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NYSE (fBm)

ALBh (fGn)

0.423 0.4980.46

0.423 0.4580.441

0.433 0.6540.508

0.48 0.5540.501

0.487 0.5450.507

0.829 0.9230.861

Figure 5: Min-Average-Max Hurst estimators of real-world time series. Con-
ventional methods and our VG/FS estimator are depicted with black dot and
colored marker (those in Figure 3) respectively.

5. Estimation errors on synthetic data

Although the VG/FS method is based on the use of a back-
bone in the Fisher-Shannon information plane constructed from
synthetic fBm signals, it is important to quantify a posteriori,
i.e. after construction of a backbone, say the one in Figure 3,
the error that our estimator commits on other fBm synthetic
signals. A quantitative analysis is performed with a number of
draws equals to 20, with an increasing number of samples con-
stituting fBm signals governed by Hurst exponents H varying
from 0.1 to 0.9 in steps of 0.05. Each time series is fed into our
estimator and, for each target H, mean and standard deviation
of the 20 estimates are calculated. We do this for fBm consist-
ing of 1 000, 2 500, 5 000, 10 000, 25 000 and 50 000 samples.
Results are reported in Table 2 (for clarity, the H values are
displayed in steps of 0.1). One can note that the number of
samples has an obvious influence on the quality of the estimate.
For a number of points equal to 50 000, the average estimate
is almost always equal to the target H with a very low standard
deviation. But the method also performs well with short time
series. If we consider the fBm drawn with 2 500 samples, the
averages are not far from the target values. A global analysis is
done and the results presented in Figure 6 show the effect of the
number of samples in signals on mean absolute error (MAE) of
H estimates. It is clear that the curve of MAE against the num-
ber of samples decreases drastically as the time series becomes
longer. In fact, the MAE falls below 0.01 when the signals ex-
ceed 20 000 samples. It can even be argued that the MAE of
0.025 for signals of 2 500 samples is already relatively correct,
compared with the differences that may exist between the min-
imum and maximum estimator among the conventional ones
proposed in Table 1 and illustrated in Figure 5, which are in all
cases greater than 0.03.
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Number of samples in synthetic time series
1 000 2 500 5 000 10 000 25 000 50 000

H
ur

st
ex

po
ne

nt

H = 0.1 0.13 ± 0.02 0.12 ± 0.01 0.11 ± 0.01 0.10 ± 0.00 0.10 ± 0.00 0.10 ± 0.00
H = 0.2 0.16 ± 0.02 0.17 ± 0.01 0.19 ± 0.01 0.19 ± 0.01 0.20 ± 0.00 0.20 ± 0.00
H = 0.3 0.25 ± 0.02 0.28 ± 0.02 0.29 ± 0.01 0.29 ± 0.01 0.30 ± 0.01 0.30 ± 0.00
H = 0.4 0.35 ± 0.03 0.39 ± 0.02 0.39 ± 0.02 0.40 ± 0.01 0.40 ± 0.01 0.40 ± 0.01
H = 0.5 0.45 ± 0.04 0.49 ± 0.03 0.50 ± 0.01 0.51 ± 0.01 0.50 ± 0.01 0.50 ± 0.01
H = 0.6 0.56 ± 0.04 0.60 ± 0.03 0.60 ± 0.02 0.60 ± 0.01 0.60 ± 0.01 0.60 ± 0.01
H = 0.7 0.67 ± 0.05 0.71 ± 0.03 0.72 ± 0.02 0.71 ± 0.02 0.71 ± 0.01 0.70 ± 0.01
H = 0.8 0.77 ± 0.04 0.81 ± 0.03 0.82 ± 0.02 0.81 ± 0.02 0.81 ± 0.02 0.79 ± 0.01
H = 0.9 0.85 ± 0.06 0.87 ± 0.02 0.87 ± 0.02 0.89 ± 0.01 0.89 ± 0.01 0.89 ± 0.01

Table 2: Averages and standard deviations of the estimates given by our VG/FS method, according to different target values of the Hurst exponent H used to generate
synthetic fBm. The number of samples in these synthetic time series varies from 1 000 to 50 000.

0 10000 20000 30000 40000 50000

Number of samples in synthetic time series

0.01

0.02

0.03

0.04

0.05

M
ea

n
ab

so
lu

te
er

ro
r

Figure 6: Mean absolute error of our VG/FS estimator on synthetic fBm (20
draws for Hurst exponent varying from 0.1 to 0.9 in steps of 0.05, i.e. 340 time
series) as a function of the number of samples in the draws.

6. Conclusion and perspectives

In this article the potential of the Fisher-Shannon informa-
tional plane associated with natural visibility graph (NVG) rep-
resentation of the input time series, is investigated as a tool to
characterize both fBm and fGn stochastic processes by estimat-
ing their H parameters. A graphical estimator of this parame-
ter, based upon this informational plane, is constructed and its
effectiveness illustrated on real data. Degree distribution is ex-
tracted from the constructed graph to characterize topological
structure and to capture the dynamics of the transformed input
time series, using information theory quantifiers, namely nor-
malized Shannon entropy and Fisher information measure. To
the best of our knowledge, this is the first time that NVG associ-
ated with such an informational plane is used to estimate quan-
titatively the H parameter. The obtained results highlight that
the estimated H are very consistent with the ones drawn from
four estimators of the literature such as the DFA and wavelet ap-
proaches. This allows to efficiently estimate the H parameter.
It is obvious that a broad class of real time series must be ana-
lyzed to confirm the obtained findings, especially for different

values of H. Thanks to the reference backbone, built in the in-
formational plane with different H values, the estimation of the
Hurst exponent of an input time series is very fast. Moreover,
the backbone construction with NVG requires a reduced num-
ber of samples in the initial synthetic fBm compared to HVG.
Although it is the fastest variant of the visibility graphs, HVG
involves at least a few million samples in these synthetic fBm
in order to get a backbone as accurate as the one obtained with
NVG [18], which makes it less efficient. The results also show
the added value of characterizing the stochastic processes us-
ing their topology as graphs in order to better exploit the em-
bedded information instead of their original temporal structures
as it can be the case with other methods [34]. Also, these re-
sults shed new light on the Fisher-Shannon information plane
to analyze complex and non-stationary signals. The proposed
graphical estimator relies on the assumption that the input time
series is correctly classified beforehand as fBm-like process. As
future work we plan to develop a strategy associated with this
graphical estimator to relax this assumption in order to consider
native fGn-like time series. In addition, it will be interesting to
investigate other information plane exploiting the Rényi, Tsallis
or Havrda-Charvát entropies to further improve the estimation
of the H parameter. Moreover, an optimal value for the thresh-
old ε can be sought. Finally, we would like to investigate others
methods of converting time-series to graphs that can produce
more insights than NVG algorithm.
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