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Abstract—Most natural matrices that incorporate information
about a graph are the adjacency and the Laplacian matrices.
These algebraic representations govern the fundamental concepts
and tools in graph signal processing even though they reveal
information in different ways. Furthermore, in the context of
spectral graph classification, the problem of cospectrality may
arise and it is not well handled by these matrices. Thus, the
question of finding the best graph representation matrix still
stands. In this letter, a new family of representations that well
captures information about graphs and also allows to find the
standard representation matrices, is introduced. This family of
unified matrices well captures the graph information and extends
the recent works of the literature. Two properties are proven,
namely its positive semidefiniteness and the monotonicity of
their eigenvalues. Reported experimental results of spectral graph
classification highlight the potential and the added value of this
new family of matrices, and evidence that the best representation
depends upon the structure of the underlying graph.

Index Terms—Graph representation, adjacency matrix, Lapla-
cian matrix, spectral graph theory, graph signal processing

I. INTRODUCTION

NETWORK data are generated from varying sources and
arise naturally in diverse fields such as social media,

physics, chemistry, biology or information systems [1], [2].
Data structures of such networks are well captured by graphs,
which are powerful models for relational data representation
that comprise a set of nodes (vertices) and weighted edges.
To describe the connections between vertices in a graph, a
matrix representation is used. A great deal of information
about the graph’s structural properties can be retrieved from
it: degree distribution, node centralities or molecular indices.
Salient features can also be revealed from eigenvalues of the
matrix representation [2]–[4]. There are two natural matrices
to conveniently represent a graph, namely adjacency matrix A
and Laplacian matrix L. Study of these matrices constitutes
a significant topic in both algebraic graph theory and graph
signal processing (GSP) [1], [3], [5]. In recent domain of GSP,
fundamental concepts on graphs based on these two matrices
are defined, but the difference in their foundation leads to
different definitions and techniques for signal analysis and
processing [6]–[8]. Overall, graphs study can be divided into
two main schools of thought : adjacency-based and Laplacian-
based. In the first one, we can quote the work of Sandryhaila
et al. where the matrix A is adopted as the shift operator
and concepts of impulse and frequency response, convolution,
filtering, and Fourier transform are developed [7], [9]. In the
second school, consider the work of Shuman et al. which
defines a generic framework for processing data on graphs,
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where operations such as filtering, translation, modulation,
dilation, and downsampling are defined using the Laplacian
matrix L [6], [10], [11]. They also put forward a suitable
interpretation of the eigenvalues (resp. eigenvectors) of matrix
L as frequencies (resp. vibratory modes) of the graph under
study. Of course, other representation matrices have also been
used, such as the degree matrix D, the signless Laplacian
Q [12] and the normalized Laplacian L [4]. This raises a
legitimate question: Which is better to use, matrix A or matrix
L ? Or an other ? On this point, the debate remains open.
The answer depends upon the target applications and what
operations to be performed on the graph. This being said, one
may think about an other way, where matrices are combined
to form a single matrix representation.

It has been shown by Bay-Ahmed et al. that, in spite
of the linear relationship between matrices A and L, these
two matrices reveal informations of graph in different ways
[13]. The authors highlight the graph’s representation disparity
between both of them illustrated via entropy, connectivity and
complexity measures [13]. These findings strengthens the idea
to combine the two matrices to better reveal the structural and
spectral properties of the graph. In the same spirit, Nikiforov
unifies the study of matrices A and Q in order to highlight the
differences and similarities between those two matrices [14].
This work gives rise to α–adjacency matrix Aα which, for
particular values of α, recovers the classical representation
matrices A,Q and D [15]. However, matrix L cannot be
obtained from the matrix Aα. Using the same strategy, Wang
et al. proposed a family of graph representations Lα called
α–Laplacian [16] which, unlike Nikiforov’s approach, allows
recovery of matrix L but fails to obtain exactly matrix A.

Based on our previous work [13] and inspired by the
families of graph representations Aα and Lα, we extend the
work of Nikiforov et al. [14] and Wang et al. [16] that includes
both the matrix A and matrix L, which are the two main
graph representations, particularly in GSP. Matrices Q and D
can also be retrieved from the proposed graph representations,
thus completing the list of classic representation matrices.

II. PRELIMINARIES & RELATED WORKS

This section covers some graph preliminaries and the related
works about generalized representation matrices. First, we
recall that a simple undirected graph G = (V, E) is a pair
of sets: the set V consisting of n vertices, called order of G,
and the set E ⊆ {{i, j} : (i, j) ∈ V2, i ̸= j} of m edges.
Weights wij can be added to edge to signify importance of a
link between two nodes in a network. In the unweighted case,
matrix A is binary, where the coefficient Aij is 1 if there
exists an edge {i, j} and 0 otherwise. For weighted graph,
the 1 is replaced by the weight wij . Another matrix is the
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diagonal degree matrix D which contains information about
the degree of each vertex deg(i) =

∑n
j=1 Aij defined as the

number of edges attached to each vertex in the unweighted
case. The last conventional matrix is the Laplacian matrix
L := D − A defined as a combination of the two former.
This matrix is used particularly in spectral graph theory, since
it has a physical meaning insofar as a quadratic form can be
defined from it, which measures the smoothness of a function
defined on the graph [4]. Variants of the matrix L exist such
as the normalized Laplacian L := D−1/2LD−1/2 [4] or the
signless Laplacian Q := D+A [17].

The idea behind this work came from the observation
that GSP, a fairly recent field that takes advantage of graph
spectral theory, was seeing two theories “competing” with
each other as mentioned above: the one for which the graph
Fourier transform is defined using matrix A [7], and the other
defined using matrix L [6]. So the idea is to think of a
parametric representation that can be used to study several
of them at once, in particular their spectral aspects. Indeed,
the spectral graph theory is an aspect very rich for the study
of graphs. If λ1 ≤ · · · ≤ λn denote the eigenvalues of A and
0 = µ1 ≤ · · · ≤ µn denote the eigenvalues of L, then some
properties can be established on these spectra that allow us to
retrieve structural attributes [4]. With this in mind, classical
similarity measures based on structural attributes, such as the
shortest path (SP), random walk (RW), graphlet count kernel
(GK) or the Weisfeiler-Lehman isomorphism test (WL), are
gradually giving way to spectral similarity measures which
compare the spectra of the representation matrices of the
graphs studied [13], [18], [19]. Thus, one can calculate the
Euclidean distance between A–spectra (or L). This would
not be a rigorous distance, because a zero distance between
spectra does not imply that the graphs are identical: this is
the cospectrality problem [17], [20]. In fact, two structurally
different graphs with the same spectra (with respect to a
chosen representation matrix) can be found or constructed. To
tackle this problem, Joint Spectral Similarity (JSS) between
two graphs G1 and G2 was introduced in [13]:

JSSβ(G1, G2) = βSSL(G1, G2)+(1−β)SSA(G1, G2) (1)

where
SSA(G1, G2) =

∑N
ℓ=1

(
λ
(1)
ℓ − λ

(2)
ℓ

)2

SSL(G1, G2) =
∑N

ℓ=1

(
µ
(1)
ℓ − µ

(2)
ℓ

)2

with a parameter β varying from 0 to 1, N = min(n1, n2)

with n1 (resp. n2) the order of G1 (resp. G2), where λ
(1)
ℓ (resp.

λ
(2)
ℓ ) represents the ℓth eigenvalue of the matrix A of G1 (resp.

G2) and where µ(1)
ℓ (resp. µ(2)

ℓ ) represents the ℓth eigenvalue of
the matrix L of G1 (resp. G2). A limitation of this measure is
the need to calculate two spectra. So, to take this into account,
as well as cospectrality, we can think about a combination of
matrices that allows us to cover traditional ones. One can quote
the generalized adjacency matrix G = aA+ bI+ cJ and the
universal one U = G + dD (with a, b, c, d ∈ R, a ̸= 0, I
the identity matrix and J the one matrix) introduced by van
Dam et al. [21], [22]. However, these two matrices have too
many parameters which prevent intuitive and visual analysis.

This is why, Nikiforov [14] introduced the α–adjacency matrix
Aα = αD + (1 − α)A for α ∈ [0, 1]. But the matrix L
can not be recovered from Aα. So Wang et al. [16] defined
the α–Laplacian Lα = αD + (α − 1)A with α ∈ [0, 1].
This matrix passes through L but also by −A which does
not seem to be much of a problem, since the spectra of L
and A should be studied in polarity inversion, i.e. the largest
eigenvalue of matrix A corresponds to the smallest eigenvalue
of L [23], [24]. Also, one can cite the Tα representation matrix
defined by Tα := αD+ (1− 2α)A for α ∈ [0, 1] introduced
by Averty et al. [25]. In the same work, a new measure of
spectral similarity based on a correlation between Tα spectra
is proposed [25]. Let G1 and G2 be two graphs of order n. If
ν̃
(α)
1 (resp. ν̃(α)

2 ) represents the standardized spectrum of the
matrix Tα(G1) (resp. Tα(G2)), then the similarity measure
is defined by

SCorTα
(G1, G2) :=

√
1−

(
1

n

〈
ν̃
(α)
1 , ν̃

(α)
2

〉)2

(2)

where ⟨·, ·⟩ is the inner product. It has been shown that
promising classification results can be obtained with this
measure integrated into a SVM kernel in comparison with the
structural kernels previously discussed [25]. Main limitation
of the latter measure is that it requires graphs of the same
size. If this is not the case, a node-padding can be done [26].

III. PROPOSED REPRESENTATION MATRIX

With regard to all that was written earlier, and if we want
to gather all the desired advantages, including the fact that
we need to include matrix Q as it has the advantage of
encountering fewer cospectral graphs (for n ≥ 7) [17], a novel
parametric representation of graphs has to be defined. A first,
relatively naive way of doing this is to concatenate the Aα

and Lα matrices, which can be done by introducing a matrix
Sγ := (1− |γ|)D+ γA for a parameter γ ∈ [−1, 1]. Indeed,
for γ ≤ 0, the γ–Laplacian can be retrieved and for γ ≥ 0,
it is the γ–adjacency. But this intuitive manner does not give
enough space as we are interested in whether there is a “best”
representation by combining all these previous matrices. To
do this, the following representation plan is constructed:

Pα,k := αD+ (2k − 1)(α− 1)A, α, k ∈ [0, 1]. (3)

As illustrated in Fig. 1, most representation matrices can be
recovered from Pα,k. Thus, we can study the gradual changes
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Fig. 1. Representation plan Pα,k for α, k ∈ [0, 1]. Standard representation
matrices are in red on the figure although the matrices of Nikiforov and Wang
are green. These matrix equalities are listed in the table on the right.
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of Pα,k between A and D, passing through Q and L. In
the following, we present two important properties of Pα,k,
namely the positive semidefiniteness and the monotonicity of
their eigenvalues in α.

Prop 1. Let G be a graph with Pα,k its representation plan.
Then Pα,k is positive semidefinite if 2α−1

2(α−1) ≤ k ≤ 1
2(1−α) .

Proof. Since A = D−L, the expression of Pα,k can be written as:

Pα,k = [α+ (2k − 1)(α− 1)]D+ (2k − 1)(1− α)L.

As D and L are two positive semidefinite matrices and using the
fact that the sum of two positive semidefinite matrices is positive
semidefinite, then both conditions α + (2k − 1)(α − 1) ≥ 0 and
(2k− 1)(1− α) ≥ 0 are needed to get the positive semidefiniteness
of Pα,k. Thus, it is necessary to have 1

2
≤ k ≤ 1

2(1−α)
. Secondly,

generalizing what Nikiforov did for Aα to the plan Pα,k [14]:

⟨Pα,kx,x⟩ = [α− (2k − 1)(α− 1)]
∑
i∈V

x2
i deg(i)

+ (2k − 1)(α− 1)
∑

(i,j)∈E

(xi + xj)
2

where xi is ith component of the vector x ∈ Rn. For any edge {i, j},

⟨Pα,kx,x⟩ ≥ [α− (2k − 1)(α− 1)] (x2
i + x2

j )

+ (2k − 1)(α− 1)(xi + xj)
2.

Then, an other condition to get the positive semidefiniteness of Pα,k

is to have α− (2k− 1)(α− 1) ≥ 0 and (2k− 1)(α− 1) ≥ 0 which
implies 2α−1

2(α−1)
≤ k ≤ 1

2
. Finally, by grouping all the conditions

together, we obtain a necessary condition: if 2α−1
2(α−1)

≤ k ≤ 1
2(1−α)

,
then Pα,k is positive semidefinite. ■

Fig. 1 also presents an illustration of the Prop 1’s necessary
conditions: matrices defined in the shaded area are necessarily
positive semidefinite. Actually, it may be conjectured thanks
to the Theorem 3.5 of Wang et al. [16] that the condition of
positive semidefiniteness 1

2 ≤ k ≤ 1
2(1−α) is necessary and

sufficient i.e. it does not exist a couple (α∗, k∗) in the domain[
0, 1

2

]
×

[
1

2(1−α) , 1
]

for which the matrix Pα∗,k∗ is positive
semidefinite. This conjecture is illustrated on two graphs (the
comet and the twoballs graphs) by Fig. 2. Elsewhere, Prop 1
points to a condition that is only necessary. Indeed, like Niki-
forov’s work, determining the domain in which the condition
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Fig. 2. Graphs (Left : Twoballs / Right : Comet) and positive semidefiniteness
of their Pα,k representation matrices with respect to α and k (yellow for true,
blue for false). The red curves correspond to the condition of Prop 1.

becomes necessary and sufficient seems to be an arduous task
and must obviously depend on the structure of the graph under
study. For this reason, an open question is: for which graphs
does the assertion of Prop 1 become reciprocal? To illustrate,
and as shown by Fig. 2, the comet graph seems to have a
positive semidefinite representation plan in the aforementioned
domain and nowhere else whereas for the twoballs graph,
the condition is only necessary. Indeed, as an example for
this graph, the P0.25,0.25 matrix is positive semidefinite even
though the point is outside the proven domain of Prop 1.

In the sequel, let us denote ν
(α,k)
ℓ the ℓth eigenvalue of the

matrix Pα,k. Another interesting result is the generalization of
Nikiforov’s Proposition 3 in [14] on the monotonicity of ν(α,k)ℓ

in α (and not in k), formalized by the following proposition.

Prop 2. Let G be a graph, α ∈ [0, 1] and α′ ∈ [α, 1]. Then,

ν
(α,k)
ℓ ≤ ν

(α′,k)
ℓ , ∀k ∈ [0, 1]

Proof. Let α ∈ [0, 1] and α′ ∈ [α, 1]. The same proof scheme as
Nikiforov [14] is used so the following expression needs to be written

Pα′,k −Pα,k = (α′ − α) [D− (2k − 1)A]

Thanks to a simplified version of the Weyl theorem [27], it follows

νℓ(Pα′,k)− νℓ(Pα,k) ≥ (α′ − α)ν1(D− (2k − 1)A) ≥ 0

where ν1(D − (2k − 1)A), which denotes the smallest eigenvalue
of the matrix M := D− (2k−1)A, is non-negative. To prove it, let
us show that M is positive semidefinite. Let x be a vector of Rn:

⟨Mx,x⟩ =
∑
i∈V

x2
i di − 2(2k − 1)

∑
(i,j)∈E

xixj

= 2(1− k)
∑
i∈V

x2
i di + (2k − 1)

∑
(i,j)∈E

(xi − xj)
2 (4)

= 2k
∑
i∈V

x2
i di + (1− 2k)

∑
(i,j)∈E

(xi + xj)
2. (5)

We use the expression (5) for 0 ≤ k ≤ 1/2 and (4) for 1/2 ≤ k ≤ 1

to prove that ⟨Mx,x⟩ ≥ 0. All eigenvalues of M, in particular the
smallest, are thus non-negative which completes the proof. ■

This result lends theoretical support to the definition of this
representation plan and allows conjectures to be made about
possible results, since it is known in advance that spectra will
stack according to α for any k chosen between 0 and 1.

IV. GRAPH SPECTRAL CLASSIFICATION

A. Motivations & Classification strategy

As an application of this new representation matrix, this
section is dedicated to a spectral classification of graphs. This
Pα,k matrix plan should be seen as a tool for highlighting
how spectral information evolves “between” classical repre-
sentation matrices. Therefore, we adopt a SVM classification
method to show that there are intermediate matrices containing
more discriminating spectral information for graph classifica-
tion. In our SVM classification, the kernel is defined as a
variant of Eq. (2) in the sense that the standardized spectra
of the Tα matrices are replaced by the standardized spectra
of the Pα,k matrices, i.e. the Gram matrix K will be defined
with the following coefficients

[K]ij = exp
(
−SCorPα,k

(Gi, Gj)
)
. (6)
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B. Graph & Signal datasets

To show the interest of the family Pα,k for graphs rep-
resentation, five well known databases containing graphs or
signals of very different origins are used for classification
purpose. Databases MUTAG [28] and PTC MR [29] con-
tain respectively 188 and 344 chemical compounds labeled
according to their mutagenic effect on a bacterium and car-
cinogenicity on male rats respectively. The IMDB-BINARY
and IMDB-MULTI [30] movie collaboration datasets are
used and consist of the ego-networks of respectively 1000
and 1500 actors/actresses who played roles in movies in
IMDb divided into respectively two and three genres. The
ItalyPowerDemand [31], [32] dataset contains 1096 pieces
of a twelve monthly electrical power demand time series
from Italy. The classification task is to distinguish days from
Oct to March from Apr to Sept. These signals are converted
into graphs thanks to the well-known horizontal visibility
algorithm [33], [34]. Since the structures embedded in the
graphs are different, it is expected that the results will differ
from one database to another. Consequently, the “best” matrix
for spectral classification will differ as well.

C. Results & Discussions

The SVM classifier is trained with a 10-fold stratified
cross-validation. Graphical results and the associated accuracy
values, averaged over 10 iterations, are shown in Fig. 3.
Parameters α and k of the plan Pα,k are taken between 0 and
1 by step 0.05. As depicted in Fig. 3, “maps” that represent
classification accuracies are different from one database to
another. This highlights the fact that a sole representation does
not fit well all the databases. That is to say, it is not the spectral
content of a single matrix that allows the best classification for
all databases. On the other hand, the optimal matrices in terms
of classification accuracies differ greatly from one database to
the next as it can be read on the table of Fig. 3. Indeed, it
is the matrix P1,k = D for MUTAG with an accuracy of
88.2% exceeding the others by nearly 3%. For PTC MR, the
matrix P0.1,0.75, with an accuracy of 59.6%, is slightly ahead
(+0.5%) of the results obtained with the classic matrices L
and Q. It is again a non-standard matrix (P0.3,0.05) for IMDB-
BINARY that reaches a 72.55% classification accuracy and for
ItalyPowerDemand, it is the matrix P0.35,0.25 that performs
best a little higher than the result with the matrix Q. The
reasons why it is these parameters that produce the best results

must be investigated. What these results show is that in 4 out
of 5 cases it is not a standard representation matrix (A, L,
D or Q) which provides the best spectral classification to be
carried out. For the same classification method, we highlight
here that the optimal spectral content differs from one matrix
to another and does not reside in the classic matrices but in a
combination of the latter. Even if the main objective was not
classification, but graph representation, the accuracy results
(Fig. 3) obtained with the SCor kernel are comparable to those
of SP and WL structural kernels and the JSS spectral kernel.
However, for the ItalyPowerDemand database, the accuracy
reached by WL is the best. In terms of computation times
listed in Table I of kernel matrices on entire databases, the
SCor kernel is better than the computationally-intensive RW
and GK kernels, as well as the JSS kernel, which requires
two spectra computation. The SP and WL kernels require less
computation time, as they are dependent on the structures in
the graphs. Since our method only depends on the number of
vertices, it will be better suited to dense graphs, unlike the SP
and WL kernels, which are better suited to sparse graphs.

SCor JSS SP RW GK WL
MUTAG 0.25 0.31 0.30 6.83 1.52 0.06
PTC MR 0.68 0.68 0.45 19.52 1.76 0.09
IMDB-BINARY 5.69 7.41 3.73 215 > 900 0.72
IMDB-MULTI 10.01 10.41 3.02 235 > 900 0.80
ItalyPowerDemand 4.93 13.04 2.95 No convergence 24.79 0.62

TABLE I
AVERAGED COMPUTATION TIMES OF DIFFERENT KERNELS (IN SECONDS).

V. CONCLUSION & PERSPECTIVES

In this letter, a new family of representation matrices gener-
alizing most of the traditional ones, noted Pα,k, that well cap-
tures information about a graph is introduced. This family has
at least two properties, namely the positive semidefiniteness
and the monotonicity of the eigenvalues in parameter α. In
addition, we report graph classification results using a spectral
correlation kernel on real data from the literature that highlight
the added value of this family of matrices by showing that
classification accuracies are similar or even better than other
traditional kernels. As future work, we plan to investigate more
properties of Pα,k and potential concepts of digital signal
processing such as filtering or frequency response based on
Pα,k. Another natural extension will be to develop a strategy
to estimate the best parameters (α, k) of the representation
that incorporates information about the graph under study.
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Best matrices SCor kernel with classical matrices Other kernels
A = P0,0 D = P1,k L = 2P0.5,1 Q = 2P0.5,0 JSS SP WL

MUTAG 88.2 ± 0.4% (P1,k) 85.1±0.1% 88.2±0.4% 85.2 ± 0.4% 85.1 ± 0.6% 84.3±1.1% 83.6±1.2% 85.6±0.9%
PTC MR 59.6 ± 0.7% (P0.1,0.75) 59.0±1.2% 56.6±0.7% 59.1 ± 0.8% 59.2 ± 0.5% 57.8±2.1% 58.2±1.9% 62.3±1.0%
IMDB-BINARY 72.6 ± 0.5% (P0.3,0.05) 70.0±0.8% 71.2±0.5% 71.1 ± 0.6% 70.5 ± 0.6% 67.5±0.9% 69.8±1.3% 72.7±1.2%
IMDB-MULTI 50.0 ± 0.5% (P0.35,0.1) 48.0±0.4% 49.4±0.3% 48.9 ± 0.2% 49.5 ± 0.4% 48.3±0.4% 49.3±0.6% 50.8±0.5%
ItalyPowerDemand 86.7±0.2% (P0.35,0.25) 79.1±0.2% 62.2±0.4% 73.6 ± 0.4% 86.0 ± 0.2% 92.3±0.2% 91.6±0.5% 96.1±0.1%

Fig. 3. Figures on the top depict classification accuracies for 5 graph datasets and for different values of α and k defining Pα,k . In the table, accuracies
reached by SCor kernel for the best Pα,k matrix and for classical ones (A,D,L,Q) as well as accuracies obtained with other kernels (JSS, SP and WL).
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