Sur la similarité spectrale des graphes par mesure de corrélation

AER Tristan AVERTY MCF Delphine DARÉ-EMZIVAT PU Abdel-Ouahab BOUDRAA IRENav (Institut de Recherche de l'École Navale) IRENav & ENSAM (École nationale supérieure d'Arts et Métiers) IRENav & ENSAM

XXIXème Colloque Francophone de Traitement du Signal et des Images (Grenoble)

Graphes

Définition

Un graphe simple non-orienté $G = (\mathcal{V}, \mathcal{E})$ est constitué :

- > d'un ensemble \mathscr{V} de *n* sommets;
- ▶ d'un ensemble $\mathscr{E} \subseteq \{\{v_i, v_j\} \mid (v_i, v_j) \in \mathscr{V}^2, v_i \neq v_j\}$ de *m* arêtes.
- d'un ensemble de valeurs w_{ij} appelées poids qui pondèrent les arêtes (i, j) si le graphe est pondéré.

Figure - Deux graphes simples non-orientés et non-pondérés (6 sommets / 7 arêtes)

Deux graphes bien différents, n'est-ce pas?

Matrices de représentation pour la classification de graphes

Matrices de représentation de la littérature

- Matrice d'adjacence A où les coefficients A_{ij} désigne s'il existe une arête (i, j) ou pas;
- Matrice des degrés D. Le degré d'un sommet est son nombre d'arêtes incidentes;
- > Matrice laplacienne¹ L := D A;
 - Matrice laplacienne normalisée ¹ $L_N := D^{-1/2}LD^{-1/2} = I D^{-1/2}AD^{-1/2}$;
 - Matrice laplacienne sans-signe² Q := D + A;
 - Matrice de densité ³ $\rho := L / Tr(L)$.

- 1. F.R. Chung, Spectral graph theory, American Mathematical Society, 1997
- 2. D. Cvetković et al., Signless Laplacians of finite graphs. Linear Algebra and its applications, 2007
- 3. S.L. Braunstein et al., The Laplacian of a graph as a density matrix : a basic combinatorial approach to separability of mixed states, Annals of Combinatorics, 2006

Classification de graphes

Exemples d'applications :

- Classification de graphes naturels
 - Déterminer si une molécule est cancérigène ou non.
- Classification de séries temporelles (vues comme des graphes)
 - Déterminer si un signal EEG provient d'un patient sain ou épileptique⁴.
 - Déterminer si un signal MAD contient une signature magnétique ou non.

Méthode :

- > Création une mesure de similarité entre graphes.
- Mise sous forme d'une fonction noyau de cette mesure de similarité;
- > Choix d'un algorithme de classification (SVM par exemple) et entrainement à partir de ce noyau.

^{4.} T. Averty et al., Détection d'épilepsie dans les signaux EEG par graphe de visibilité et un noyau de SVM adapté, GRETSI, 2022

Deux méthodes principales pour classifier des graphes

Classification structurelle : comparaison d'attributs structurels.

- ➡ Comparaison des plus courts chemins⁵ (SP pour Shortest Path);
- Comparaison des marches aléatoires⁶ (RW pour Random Walk);
- Décompte des sous-graphes⁷ (GK pour Graphlet Count);
- ➡ Test d'isomorphisme de Weisfeiler-Lehman⁸ (WL).

Noyaux structurels performants mais souvent très coûteux en calcul.

Classification spectrale : comparaison d'attributs spectraux extraits de matrices de représentation.

- Deux écoles : celle de la matrice d'adjacence A et celle de la matrice laplacienne L.
- Volonté de trouver une matrice qui effectue un balayage entre ces deux matrices.
- Des propriétés sur les spectres permettent de retrouver des éléments structurels.

Recherche d'une mesure de similarité spectrale associée à une nouvelle matrice de représentation permettant une classification spectrale de graphes

^{5.} K.M. Borgwardt et H.P. Kriegel, Shortest-path kernels on graphs, 5th IEEE International Conference Data Mining, 2005

^{6.} T. Gärtner et al., On graph kernels : Hardness results and efficient alternatives, 16th Annual Conference on Learning Theory and 7th Kernel Workshop, 2003

^{7.} N. Shervashidze et al., Efficient graphlet kernels for large graph comparison, Artificial Intelligence and Statistics, 2009

^{8.} N. Shervashidze et al., Weisfeiler-Lehman graph kernels, Journal of Machine Learning Research, 2011

Classification spectrale : Théorie spectrale & cospectralité

- Soient les valeurs propres de la matrice A notées λ₁ ≤ λ₂ ≤ ... ≤ λ_n;
- Soient les valeurs propres de la matrice L notées 0 = µ₁ ≤ µ₂ ≤ ... ≤ µₙ;

Propriétés :

- \ll Le rayon spectral λ_n peut être interprété comme une mesure de vulnérabilité globale ⁹ (shield value);
- La multiplicité de la valeur propre 0 de L est le nombre de composantes connectées du graphe ;

La valeur de Fiedler µ₂ donne une information sur la connectivité;

Si m désigne le nombre d'arêtes et T le nombre de triangles dans le graphe, alors

$$\sum_{\ell=1}^{n} \lambda_{\ell} = 0, \qquad \sum_{\ell=1}^{n} \lambda_{\ell}^{2} = 2m, \qquad \sum_{\ell=1}^{n} \lambda_{\ell}^{3} = 6T, \qquad \sum_{\ell=1}^{n} \mu_{\ell} = 2m, \qquad \sum_{\ell=1}^{n} \mu_{\ell}^{2} = 2m + \sum_{v_{i} \in \mathcal{V}} \deg(v_{i})^{2}$$

Idée : Calcul d'une distance entre les spectres pour comparer une multitude d'aspects.

^{9.} C. Chen et al., Node Immunization on Large Graphs : Theory and Algorithms, IEEE Transactions on Knowledge and Data Engineering, 2016

Classification spectrale : Similarité spectrale conjointe

Similarité spectrale conjointe 10

Soient deux graphes G_1 et G_2 d'ordre n_1 et n_2 . La similarité spectrale conjointe (SSC) est définie par :

$$SSC_{\beta}(G_{1}, G_{2}) = \beta \sum_{\ell=1}^{\min(n_{1}, n_{2})} (\mu_{1\ell} - \mu_{2\ell})^{2} + (1 - \beta) \sum_{\ell=1}^{\min(n_{1}, n_{2})} (\lambda_{1\ell} - \lambda_{2\ell})^{2}$$

où $(\lambda_{1\ell})_{1 \le \ell \le n_1}$ (resp. $(\lambda_{2\ell})_{1 \le \ell \le n_2}$) représente le spectre de la matrice d'adjacence de G_1 (resp. G_2) et où $(\mu_{1\ell})_{1 \le \ell \le n_1}$ (resp. $(\mu_{2\ell})_{1 \le \ell \le n_2}$) représente le spectre de la matrice laplacienne de G_1 (resp. G_2).

Forces :

- > Cette mesure tient compte du problème de cospectralité entre graphes.
- > $\beta = 1$: comparaison des spectres laplacien / $\beta = 0$: comparaison des spectres d'adjacence.

Limitations :

- > Il est nécessaire de calculer deux spectres.
- > Selon les ordres n_1 et n_2 , cette mesure omet un certain nombre de valeurs propres.
 - Méthode type Dynamic Time Warping
 - Complétion par des nœuds (node-padding)

Idée : Définir une mesure de similarité spectrale à partir d'un unique calcul de spectre

^{10.} H.A. Bay-Ahmed et al., A joint spectral similarity measure for graphs classification, Pattern Recognition Letters, 2019

Matrices d'adjacence généralisées

Matrices d'adjacence généralisées

- > Matrice d'adjacence généralisée ¹¹ $\mathbf{G} := \alpha \mathbf{A} + \beta \mathbf{I} + \gamma \mathbf{J}$
 - X Problème : 3 paramètres.
- ► Matrice d'adjacence universelle ¹¹ $\mathbf{U} := \alpha \mathbf{A} + \beta \mathbf{I} + \gamma \mathbf{J} + \delta \mathbf{D}$ (avec $\alpha, \beta, \gamma, \delta \in \mathbb{R}, \alpha \neq 0$)
 - X Problème : 4 paramètres.
- > Matrice d' α -adjacence ¹² $\mathbf{A}_{\alpha} := \alpha \mathbf{D} + (1 \alpha) \mathbf{A}$ (avec $0 \le \alpha \le 1$)
 - Froblème : Ne fait pas apparaître L mais Q.
- > Matrice α -laplacienne ¹³ $\mathbf{L}_{\alpha} := \alpha \mathbf{D} + (\alpha 1) \mathbf{A}$ (avec $0 \le \alpha \le 1$.
 - X Problème : Ne fait pas apparaître A mais —A.

^{11.} W.H. Haemers et G.R Omidi, Universal adjacency matrices with two eigenvalues, Linear Algebra Appl., 2011

^{12.} V. Nikiforov, Merging the A- and Q-spectral theories, Applicable Analysis and Discrete Mathematics, 2017.

^{13.} S. Wang et al., Bounds for the largest and the smallest A_a eigenvalues of a graph in terms of vertex degrees, Linear Algebra and its Applications, 2020.

Nouvelle matrice de représentation

Matrice de représentation T_{α}^{14}

$$\mathbf{T}_{\alpha} := \alpha \mathbf{D} + (1 - 2\alpha) \mathbf{A}, \quad 0 \le \alpha \le 1$$

Semi-définie positivité :

- Si α ≥ 1/2, alors T_α est semi-définie positive.
- Condition suffisante mais non nécessaire : il existe des α ≤ 1/2 tels que T_α ≥ 0.

Quelques propriétés algébriques :

Si σ_{ℓ} désigne les valeurs propres de \mathbf{T}_{α} et *m* le nombre d'arêtes du graphe, alors

$$\operatorname{Tr}(\mathbf{T}_{\alpha}) = \sum_{\ell=1}^{n} \sigma_{\ell} = 2\alpha m, \qquad \operatorname{Tr}(\mathbf{T}_{\alpha}^{2}) = \sum_{\ell=1}^{n} \sigma_{\ell}^{2} = \alpha^{2} \sum_{v_{i} \in \mathcal{V}} \operatorname{deg}(v_{i})^{2} + 2m(1 - 2\alpha)^{2}$$

Soit $\alpha, \beta \in [0, 1]$. Alors

$$\mathbf{T}_{\alpha+\beta} = \mathbf{T}_{\alpha} + \mathbf{T}_{\beta} - \mathbf{A}, \qquad \mathbf{T}_{\alpha-\beta} = \mathbf{T}_{\alpha} - \mathbf{T}_{\beta} + \mathbf{A}$$

^{14.} T. Averty et al., Sur la similarité spectrale des graphes par mesure de corrélation, GRETSI, 2023

Classification spectrale : Similarité spectrale par mesure de corrélation

Similarité spectrale par mesure de corrélation¹⁵

Soient deux graphes G_1 et G_2 d'ordre *n*. Si $\tilde{\nu}_a(G_1)$ (resp. $\tilde{\nu}_a(G_2)$) représente le **spectre standardisé** de la matrice $\mathbf{T}_a(G_1)$ (resp. $\mathbf{T}_a(G_2)$), alors une mesure de similarité entre les graphes G_1 et G_2 basée sur une distance construite à partir de la corrélation ¹⁶ est définie comme suit :

$$\operatorname{CorS}_{\mathbf{T}_{\alpha}}(G_{1},G_{2}) := \sqrt{1 - \left(\frac{1}{n} \left\langle \widetilde{\nu}_{\alpha}(G_{1}), \widetilde{\nu}_{\alpha}(G_{2}) \right\rangle \right)^{2}}$$
(1)

> Problème : une corrélation ne peut être calculée qu'entre deux vecteurs de même taille.

- Solution temporaire : node-padding;
- Conjecture : « Il est moins grave de comparer de l'information artificielle que d'oublier de l'existant »;

> Mise en place de la classification spectrale à l'aide de T_{α} et du **noyau de SVM** défini par les coefficients

$$\mathbf{K}_{ij} = \exp\left(-\gamma \operatorname{CorS}_{\mathbf{T}_{\alpha}}(G_{i}, G_{j})\right)$$

^{15.} T. Averty et al., Sur la similarité spectrale des graphes par mesure de corrélation, GRETSI, 2023

^{16.} S. Van Dongen et A. J. Enright, Metric distances derived from cosine similarity and Pearson and Spearman correlations, arXiv :1208.3145, 2012

Classification spectrale de graphes

Données Noyau	MUTAG	PTC-MR	PROTEINS	IMDB-BINARY	IMDB-MULTI
Shortest Path	85.79 ± 2.51	58.24 ± 2.44	$\textbf{75.07} \pm \textbf{0.54}$	71.26 ± 1.04	-
Random Walk	83.72 ± 1.50	57.85 ± 1.30	74.22 ± 0.42	64.54 ± 1.22	34.54 ± 0.76
Graphlet Count	81.58±2.11	57.26 ± 1.41	71.67 ± 0.55	65.87 ± 0.98	43.89 ± 0.38
Weisfeiler-Lehman	82.88 ± 0.57	-	73.52 ± 0.43	71.88 ± 0.77	49.50 ± 0.49
SCNN	$\textbf{90.08} \pm \textbf{2.01}$	63.47 ± 2.65	76.51 ± 1.37	73.24 ± 0.96	46.82 ± 1.83
SSC_{β}	84.32±1.10	57.83 ± 2.08	69.99 ± 0.39	67.46±1.01	48.19±0.19
$CorS_{A_{\alpha}}$	$\textbf{88.20} \pm \textbf{0.37}$	59.22 ± 0.59	74.48±0.17	71.24 ± 0.58	49.85 ± 0.5
CorS _{Ta}	$\textbf{88.20} \pm \textbf{0.37}$	59.22 ± 0.61	74.48±0.17	72.25 ± 0.55	49.69 ± 0.35

Table – Résultats de classification (précisions en % moyennées sur 10 itérations ± écarts-types) de différents noyaux (Shortest Path (SP), Random Walk (RW), Graphlet (GK), Weisfeiler-Lehman (WL), Spatial Convolutional Neural Network (SCNN)) sur des bases de données de la littérature.

Les résultats précédents sont affichés pour le meilleur a. Existe-t-il un a optimal?

Classification spectrale de graphes

$$\mathbf{T}_{\alpha} = \alpha \mathbf{D} + (1 - 2\alpha) \mathbf{A}, \qquad 0 \leq \alpha \leq 1$$

- Courbe rouge : Noyau gaussien avec la mesure CorST_a
- Courbe bleue : Noyau gaussien avec la mesure CorS_A
- Courbe noire : Noyau gaussien avec la mesure SSC_a

Classification spectrale de séries temporelles

- Signaux MAD (Magnetic Anomaly Detector)
 - Détection d'objets sous-marins d'intérêt
- Base de données. Pour chaque profondeur :
 - 1 000 signaux sans signature
 - 1 000 signaux avec signature
- ➤ Signaux → graphes de visibilité naturelle¹⁷ (GVN);

17. L. Lacasa et al., From time series to complex networks : The visibility graph, Proceedings of the National Academy of Sciences, 2008

Classification spectrale de séries temporelles

Figure - À gauche : signaux MAD sans et avec signature d'objets sous-marins (profondeur : 150 m). À droite, l'évolution de l'exactitude en fonction de a pour la détection.

Figure - À gauche : signaux MAD sans et avec signature d'objets sous-marins (profondeur : 250 m). À droite, l'évolution de l'exactitude en fonction de a pour la détection.

Conclusion & Perspectives

🚈 Nouvelle matrice de représentation définie comme une combinaison linéaire de A et D.

 $\mathbf{T}_{\alpha} = \alpha \mathbf{D} + (1 - 2\alpha) \mathbf{A}, \qquad 0 \le \alpha \le 1$

- 🚈 Outil permettant de comprendre l'évolution graduelle du spectre entre les matrices A, D et L.
- Mouvelle mesure de similarité spectrale basée sur une corrélation entre spectres.
- A Résultats satisfaisants sur une large gamme de graphes.
- \Im Trouver un critère déterminant pour le choix d'un **paramètre** α optimal.
- Considérer des distances de transport optimal (Wassertein) pour éviter le recours au node-padding.
- \Im Ajouter et formaliser des propriétés algébriques et spectrales de T_{α} .
- **?** Penser un plan de représentation grâce à la matrice $\mathbf{T}_{\alpha,k} = \alpha \mathbf{D} + (1 (k+1)\alpha)\mathbf{A}$ où $\alpha, k \in [0, 1]$

Sur la similarité spectrale des graphes par mesure de corrélation

AER Tristan AVERTY MCF Delphine DARÉ-EMZIVAT PU Abdel-Ouahab BOUDRAA IRENav (Institut de Recherche de l'École Navale) IRENav & ENSAM (École nationale supérieure d'Arts et Métiers) IRENav & ENSAM

XXIXème Colloque Francophone de Traitement du Signal et des Images (Grenoble)

